Minggu, 02 September 2012

Statistik Univariat

Tulisan ini merupakan kelanjutan dari tulisan saya sebelumnya.
Singkat cerita, saya merekomendasikan pada si ibu untuk memakai one sample t test (t tes satu sampel).Hal ini saya pilih karena istilah monovariat sama saja dengan univariat, atau disebut sinonim. 
Ketika Anda googling atau searching di internet anda juga akan ditawarkan untuk mengecek univariat. Nah, baru ketika Anda mengklik univariat, akan muncul berbagai teknik analisis univariat yang ada. Anda dapat menelusuri sumber tersebut satu per satu untuk mendapatkan materi/informasi seputar statistik univariat.
Kenapa saya menyarankan untuk memakai one sample t test? Hal ini didasarkan pada tujuan analisis dan jenis data yang didapatkan. Anda harus mengingat tulisan saya sebelumnya tentang teknik pemilihan analisis statistik untuk aplikasi penelitian. Pada tulisan tersebut, lihat tabel, kita dapat cek ketika tujuan yang hendak dijawab adalah menguji perbedaan satu sampel dengan jenis data yang didapatkan adalah data interval/rasio maka teknik analisis yang dipakai adalah one sample t test. Jika Anda lupa, baiknya kembali baca tulisan saya tersebut.
One sample t test termasuk dalam statistik parametrik, sehigga sebelum dipakai kita perlu uji asumsi yakni: Uji normalitas dan uji homogenitas. Berdasarkan pengalaman saya,  menangani jasa olahdata, memang alat uji ini jarang dipakai oleh para peneliti.
Apakah uji univariat hanya one sample t test? kemudian apa sajakah alat analisis yang masuk statistik bivariat? akan kita bahas pada tulisan saya berikutnya. 

Rabu, 29 Agustus 2012

Terus Belajar Structural Equation Modelling

Pada hari Selasa, 28 Agustus 2012 saya berkesempatan untuk belajar lagi tentang materi Structural Equation Modelling (SEM) dengan salah satu ahli SEM di Yogyakarta, yakni Bp. Asma'i, P.hD. Pertemuan siang itu, saya bertanya seputar permasalahan yang muncul pada persoalan SEM, yakni over fit. Indikasi dari adanya over fit adalah indikator TLI yang sebesar 1,065, di sisi lain indikator GFI sebesar 0,743 dan AGFI sebesar 0,720. Berikut hasil analisis yang kami lakukan dengan software AMOS versi 18.


Berdasarkan indikator tersebut, maka permasalahan tidak hanya over fit, tetapi juga lack of fit (marginal) untuk indikator GFI dan AGFI. Permasalahan GFI dan AGFI disebabkan data yang tidak berdistribusi normal. Benar saja, indikator Multivariat normality memang sebesar 16, jauh dari standar 2,58. 
Atas permasalahan tersebut, beberapa langkah yang disaranakan adalah: 1) dengan men-drop observed variable yang outlier, 2) mendrop data observasi yang outlier, dan 3) mengubah/transformasi menjadi skor composite. 
Itu adalah beberapa petunjuk yang diberikan pada kami, agar permasalahan yang muncul di SEM, baik dengan program AMOS maupun Lisrel dapat sesuai dengan ketentuan yang berlaku (kaidah teoritis yang ada).

Minggu, 26 Agustus 2012

Structural Equation Modelling, Masih Bau Kencur?

Ketika saya membaca artikel yang ditulis Cheung dan Lee (2001) dengan judul "an integrative model of consumer trust in internet shopping", saya tertarik dengan kata-kata di dalamnya. Pada bagian data analysis, penulis mengutip pendapat dari jurnal lainya yang menyatakan bahwa SEM masih kanak-kanak sehingga model regresi berganda yang digunakan dalam penelitia. Berikut saya kutipkan lagi tulisan tersebut.

"Since the use of structural equation modeling techniques for analyzing theoretical models containing moderators is still very much in its infancy (Jaccard & Wan 1996), standard multiple regression techniques was applied instead. Before examining the moderating effect of the research model, overall model test was conducted first."
Setelah saya telusuri pada bagian daftar pustaka, judul buku yang diacu dalam jurnal tersebut adalah:
Jaccard, J & Wan, CK (1996), Interaction Effect in Multiple Regression, Sage Publications.

Kutipan tersebut cukup  menarik perhatian saya karena baru saja saya temukan pendapat yang masih meragukan aplikasi SEM. Padahal ketika saya pelajari, SEM adalah aplikasi yang dikembangkan untuk model rumit yang tidak dapat diselesaikan dalam analisis regresi berganda.

Ketika saya lihat tahun terbitnya buku tersebut, segera saya dapat analisis bahwa memang tahun itu, teknologi komputer belum berkembang seperti sekarang. Dimana software untuk menganalisis SEM mungkin masih dikembangkan. Lain halnya pada saat tulisan ini dibuat (2012), program software sudah sangat maju dan terus menerus disempurnakan. Saat ini di laptop saya sudah terinstal program aplikasi untuk SEM seperti AMOS versi 18 ataupun Lisrel versi 8.80. Melihat dari nomor versi yang tidak muda lagi (kanak-kanak), untuk konteks sekarang, relevankan pendapat tersebut?

Kamis, 09 Agustus 2012

Statistik Monovariate

Saat itu hari sudah menjelang sore, ketika saya hendak berkemas pulang dari kantor Grha Statistika. Sekedar catatan, saya setiap hari bekerja membantu jasa olahdata di Jalan Kaliurang, Yogyakarta. Sekonyong-konyong datang seorang mahasiswi S3 dan langsung berhadapan dengan saya. Kata-kata pembuka beliau adalah "waduh saya beberapa kali ke sini tetapi sudah tutup terus". Ternyata ibu ini datang di luar jam kerja kami, jadi ketlisipan (tidak ketemu). 

Langsung setelah ice breaking itu, si ibu mengutarakan keinginannya. Beliau menunjukkan coretan dari promotornya yang membuat beliau tidak bisa tidur nyenyak dan makan enak :). Catatan itu berbunyi "kenapa tidak diuji memakai statistik monovariat?". 

Istilah ini memang amat jarang dipakai, bahkan belasan tahun saya bergelut dengan olahdata statistik, baru sekali ini saya mendengarnya. 
Jika kita googling pun, dengan kata kunci statistik monovariat, tidak akan ditemukan. Luar biasa bukan?
Setelah saya renungkan beberapa saat, mono sinonim dengan kata satu atau uni, sedangkan variat disinonimkan dengan kata variabel. Setelah digabungkan, ketemu!
Saya langsung merekomendasikan si ibu untuk memakai teknik analisis statistik univariat untuk menjawab pertanyaan promotor beliau. Teknik apa yang saya rekomendasikan? bagaimana perbedaan univariat, bivariat serta multivariat? akan bersambung pada tulisan saya berikutnya :)

Selasa, 10 Juli 2012

Location Quotients

LQ merupakan cara dalam penentuan kapasitas ekspor perekonomian daerah dan derajat self-sufficiency suatu sektor. Dalam LQ, kegiatan ekonomi daerah dibagi menjadi dua golongan, yaitu:
a) Industri basis yaitu industri dengan kegiatan ekonomi atau industri yang melayani pasar di daerah itu sendiri maupun di luar daerah yang bersangkutan.
b) Industri non basis atau industri lokal yaitu industri dengan kegiatan ekonomi atau industri yang melayani pasar di daerah tersebut.
Dasar teori LQ adalah teori economic base. Secara ringkas, inti teori economic base menyatakan bahwa industri basis menghasilkan barang-barang dan jasa untuk pasar di daerah maupun luar daerah. Penjualan keluar daerah menghasilkan pendapatan bagi daerah tersebut. Arus pendapatan dari luar daerah ini menyebabkan kenaikan konsumsi dan investasi di daerah tersebut, dan pada tahap selanjutnya meningkatkan pendapatan dan menciptakan kesempatan kerja baru. Peningkatan pendapatan tersebut tidak hanya meningkatkan permintaan terhadap industri basis, tetapi juga permintaan terhadap industri non basis (lokal). Kenaikan permintaan ini akan medorong kenaikan investasi baik pada industri basis maupun non-basis. Oleh karenanya, kenaikan investasi pada industri lokal dinyatakan juga sebagai induced-investment sebagai akibat dari kenaikan industri basis.
Rumus menghitung LQ adalah:

Vi* adalah pendapatan dari industri di suatu daerah i.
Vt* adalah pendapatan total daerah i.
Vi adalah pendapatan dari industri sejenis secara regional / nasional.
Vt adalah pendapatan regional / nasional.